
Modular Arithmetic Presentation Summary – Richard Starfield

Extended Euclidean Algorithm

Step No. q r u (coeff. of 43) v (coeff. Of 29)
- - 43 1 0
- - 29 0 1
1 1 14 1 -1
2 2 1 -2 3
3 14 0 - -

For each step k, qk = rk-2 div rk-1

Then
rk = rk-2 – qkrk-1

uk = uk-2 – qkuk-1

vk = vk-2 – qkvk-1

Last nonzero r is the gcd. Obviously, when implementing the algorithm the entire
table doesn’t have to be stored.

Chinese Remainder Theorem

Given x = ak (mod mk)
for k = 1, 2, …; and all mods are relatively prime
N = • mk = 2*3*5 = 30
nk = N / mk
yk = nk

-1 (mod mk)
x = (a1n1y1 + a2n2y2 +…) mod N

Under any mk, the kth term evaluates to ak while the other terms evaluate to 0.
If the mk’s are not relatively prime, find the gcd and split each equation into
components. Eg: 6 and 10 have gcd 2, so split 6 into 2 and 3, 10 into 2 and 5. If the
two mod 2 equations contradict one another, there is no solution. Otherwise
recombine the mod 2, mod 3 and mod 5 equations using the Chinese Remainder
Theorem as above.

Example:

x = 1 mod 2
x = 2 mod 3
x = 3 mod 5

n1 = 30 / 2 = 15; n2 = 10; n3 = 6
y1 = 15-1 (mod 2) = 1-1 (mod 2) = 1; etc…
=> x = 23 mod 30

Simultaneous Linear Mod Equations

1) Prime mod:
Every number except 0 has an inverse, so multiply pivot row by inverse of pivot.

2) Compound mod:
Split into relatively prime components, solve separately and recombine using the
Chinese Remainder theorem.

3) Prime power mod:
Find the smallest power of the prime for which there is a pivot, which is not divisible
by this power of the prime. Use extended Euclid to calculate ‘inverse’ for the pivot
with regard to this power. I.e. instead of solving ax = 1 (mod p) solve ax = 9 (mod
27). Then multiply the pivot row by this inverse (which will be relatively prime
regarding the mod).

Binary Manipulation

English Sets Pascal C
And (1) Intersection And &
Or Union Or |
Toggle/xor (2) Union\intersection Xor ^
Left shift (3) - Shl <<
Right shift (3) - shr >>

(1) can be equivalent to mod by powers of 2
(2) equivalent to adding bits mod 2
(3) equivalent to multiplying and (integer) dividing by powers of 2

Binary Euclidean Algorithm

(1) If M, N even:
gcd(M, N) = 2*gcd(M/2, N/2)

(2) If M even while N is odd:
gcd(M, N) = gcd(M/2, N)

(3) If M, N odd:
gcd(M, N) = gcd(min(M, N), |M – N|)

(replace larger with (larger – smaller); this will then be even and (1) can be applied.)

References: (i.e. useful sites!)

http://wikibooks.org/wiki/Discrete_mathematics:number_theory
http://www.cut-the-knot.org/blue/Modulo.shtml
http://www.campusprogram.com/reference/en/wikipedia/m/mo/modular_arithmetic.ht
ml

Thanks to Bruce Merry for some very useful advice regarding mod Gaussian
elimination.

