Modular Arithmetic Presentation Summary — Richard Starfield

Extended Euclidean Algorithm

Step No. | q r u (coeff. of 43) | v (coeff. Of 29)
- - 43 |1 0

- - 29 |10 1

1 1 14 |1 -1

2 2 1 -2 3

3 14 |10 - -

For each step k, qx = rx2 div 1y
Then

Tk = T2 — qQklk-1

Uk = Uk-2 — qkUk-1

Vk = Vk-2 — QkVk-1

Last nonzero r is the gcd. Obviously, when implementing the algorithm the entire
table doesn’t have to be stored.

Chinese Remainder Theorem

Given x = ak (mod m)

fork =1, 2, ...; and all mods are relatively prime
N=e mk=2%3*%5=30
nk = N/ mg

yk = nk'1 (mod mk)
X =(any, +a,ny, +...) mod N

Under any m,, the k™ term evaluates to a, while the other terms evaluate to 0.
If the m,’s are not relatively prime, find the gcd and split each equation into

components. Eg: 6 and 10 have gcd 2, so split 6 into 2 and 3, 10 into 2 and 5. If the
two mod 2 equations contradict one another, there is no solution. Otherwise
recombine the mod 2, mod 3 and mod 5 equations using the Chinese Remainder
Theorem as above.

Example:

x =1 mod 2
x =2 mod 3
x=3mod>5

n,=30/2=15;n,=10;n,=6
y, = 15" (mod 2) = 1" (mod 2) = [; etc...
=>x =23 mod 30



Simultaneous Linear Mod Equations

1) Prime mod:
Every number except 0 has an inverse, so multiply pivot row by inverse of pivot.

2) Compound mod:
Split into relatively prime components, solve separately and recombine using the
Chinese Remainder theorem.

3) Prime power mod:

Find the smallest power of the prime for which there is a pivot, which is not divisible
by this power of the prime. Use extended Euclid to calculate ‘inverse’ for the pivot
with regard to this power. I.e. instead of solving ax = 1 (mod p) solve ax =9 (mod
27). Then multiply the pivot row by this inverse (which will be relatively prime
regarding the mod).

Binary Manipulation

English Sets Pascal C
And (1) Intersection And &
Or Union Or |
Toggle/xor (2) | Union\intersection | Xor A
Left shift (3) - Shl <<
Right shift (3) | - shr >>

(1) can be equivalent to mod by powers of 2
(2) equivalent to adding bits mod 2
(3) equivalent to multiplying and (integer) dividing by powers of 2

Binary Euclidean Algorithm

(1) If M, N even:
gcd(M, N) = 2*gcd(M/2, N/2)
(2) If M even while N is odd:
gcd(M, N) = gcd(M/2, N)
(3) If M, N odd:
gcd(M, N) = gcd(min(M, N), IM —NI)
(replace larger with (larger — smaller); this will then be even and (1) can be applied.)

References: (i.e. useful sites!)

http://wikibooks.org/wiki/Discrete _mathematics:number theory
http://www.cut-the-knot.org/blue/Modulo.shtml
http://www.campusprogram.com/reference/en/wikipedia/m/mo/modular arithmetic.ht
ml

Thanks to Bruce Merry for some very useful advice regarding mod Gaussian
elimination.



